Introduction to Modern Optics

by
Edition: 2nd
Format: Paperback
Pub. Date: 1989-06-01
Publisher(s): Dover Publications
  • eCampus.com Device Compatibility Matrix

    Click the device icon to install or view instructions

    Apple iOS | iPad, iPhone, iPod
    Apple iOS | iPad, iPhone, iPod
    Android Devices | Android Tables & Phones OS 2.2 or higher | *Kindle Fire
    Android Devices | Android Tables & Phones OS 2.2 or higher | *Kindle Fire
    Windows 10 / 8 / 7 / Vista / XP
    Windows 10 / 8 / 7 / Vista / XP
    Mac OS X | **iMac / Macbook
    Mac OS X | **iMac / Macbook
    Enjoy offline reading with these devices
    Apple Devices
    Android Devices
    Windows Devices
    Mac Devices
    iPad, iPhone, iPod
    Our reader is compatible
     
     
     
    Android 2.2 +
     
    Our reader is compatible
     
     
    Kindle Fire
     
    Our reader is compatible
     
     
    Windows
    10 / 8 / 7 / Vista / XP
     
     
    Our reader is compatible
     
    Mac
     
     
     
    Our reader is compatible
List Price: $19.95

Buy New

Special Order. We will make every effort to obtain this item but cannot guarantee stock or timing.
$19.93

Buy Used

Usually Ships in 24-48 Hours
$14.96

Rent Book

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:1825 Days access
Downloadable:Lifetime Access
$22.74
$22.74

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

A complete basic undergraduate-level course in modern optics for students in physics, technology and engineering. The first half deals with classical physical optics; the second, the quantum nature of light. Many applications of the laser to optics are integrated throughout the text. Problems and answers. 170 illustrations.

Table of Contents

Preface
Chapter 1 The Propagation of Light
1.1 Elementary Optical Phenomena and the Nature of Light
1.2 Electrical Consants and the Speed of Light
1.3 Plane Harmonic Waves. Phase Velocity
1.4 Alternative Ways of Representing Harmonic Waves
1.5 Group Velocity
1.6 The Doppler Effect
Chapter 2 The Vectorial Nature of Light
2.1 General Remarks
2.2 Energy Flow. The Poynting Vector
2.3 Linear Polarization
2.4 Circular and Elliptic Polarization
2.5 Matrix Representation of Polarization. The Jones Calculus
2.6 Reflection and Refraction at a Plane Boundary
2.7 Amplitudes of Reflected and Refracted Waves. Fresnel's Equations
2.8 The Brewster Angle
2.9 The Evanescent Wave in Total Reflection
2.10 Phase Changes in Total Internal Reflection
2.11 Reflection Matrix
Chapter 3 Coherence and Interference
3.1 The Principle of Linear Superposition
3.2 Young's Experiment
3.3 The Michelson Interferometer
3.4 Theory of Partial Coherence. Visibility of Fringes
3.5 Coherence Time and Coherence Length
3.6 Spectral Resolution of a Finite Wave Train. Coherence and Line Width
3.7 Spatial Coherence
3.8 Intensity Interferometry
3.9 Fourier Transform Spectroscopy
Chapter 4 Multiple-Beam Interference
4.1 Interference with Multiple Beams
4.2 The Fabry-Perot Interferometer
4.3 Resolution of Fabry-Perot Instruments
4.4 Theory of Multilayer Films
Chapter 5 Diffraction
5.1 General Description of Diffraction
5.2 Fundamental Theory
5.3 Fraunhofer and Fresnel Diffraction
5.4 Fraunhofer Diffraction Patterns
5.5 Fresnel Diffraction Patterns
5.6 Applications of the Fourier Transform to Diffraction
5.7 Reconstruction of the Wave Front by Diffraction. Holography
Chapter 6 Optics of Solids
6.1 General Remarks
6.2 Macroscopic Fields and Maxwell's Equations
6.3 The General Wave Equation
6.4 Propagation of Light in Isotropic Dielectrics. Dispersion
6.5 Propagation of Light in Conducting Media
6.6 Reflection and Refraction at the Boundary of an Absorbing Medium
6.7 Propagation of Light in Crystals
6.8 Double Refraction at a Boundary
6.9 Optical Activity
6.10 Faraday Rotation in Solids
6.11 Other Magneto-optic and Electro-optic Effects
6.12 Nonlinear Optics
Chapter 7 Thermal Radiation and Light Quanta
7.1 Thermal Radiation
7.2 Kirchoff's Law. Blackbody Radiation
7.3 Modes of Electromagnetic Radiation in a Cavity
7.4 Classical Theory of Blackbody Radiation. The Rayleigh-Jeans Formula
7.5 Quantization of Cavity Radiation
7.6 Photon Statistics. Planck's Formula
7.7 The Photoelectric Effect and the Detection of Individual Photons
7.8 Momentum of a Photon. Light Pressure
7.9 Angular Momentum of a Photon
7.10 Wavelength of a Material Particle. de Broglie's Hypothesis
7.11 Heisenberg's Uncertainty Principle
Chapter 8 Optical Spectra
8.1 General Remarks
8.2 Elementary Theory of Atomic Spectra
8.3 Quantum Mechanics
8.4 The Schrödinger Equation
8.5 Quantum Mechanics of the Hydrogen Atom
8.6 Radiative Transitions and Selection Rules
8.7 Fine Structure of Specturm Lines. Electron Spin
8.8 Multiplicity in the Spectra of Many-Electron Atoms. Spectroscopic Notation
8.9 Molecular Spectra
8.10 Atomic-Energy Levels in Solids
Chapter 9 Amplification of Light. Lasers
9.1 Introduction
9.2 Stimulated Emission and Thermal Radiation
9.3 Amplification in a Medium
9.4 Methods of Producing a Population Inversion
9.5 Laser Oscillation
9.6 Optical-Resonaor Theory
9.7 Gas Lasers
9.8 Optically Pumped Solid-State Lasers
9.9 Dye Lasers
9.10 Semiconductor Diode Lasers
9.11 Q-Switching and Mode Locking
9.12 The Ring Laser
Chapter 10 Ray Optics
10.1 Reflection and Refraction at a Spherical Surface
10.2 Lenses
10.3 Ray Eqauations
10.4 Ray Matrices and Ray Vectors
10.5 Periodic Lens Waveguides and Opical Resonators
Appendix I Relativistic Optics
1.1 The Michelson-Morley Experiment
1.2 Eindtein's Postulates of Special Relativity
1.3 Relativistic Effects in Optics
1.4 The Experiments of Sagnac and of Michelson and Gale to Detect Rotation
References
Answers to Selected Odd-Numbered Problems
Index

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.