Preface to the Second Edition |
|
v | |
Preface to the First Edition |
|
vii | |
|
|
xvii | |
|
|
xxi | |
|
|
xxv | |
|
|
1 | (14) |
|
|
2 | (11) |
|
|
13 | (1) |
|
Notes and Further Reading |
|
|
14 | (1) |
|
Modelling and Analysis of Cross-Sectional Data: A Review of Univariate Generalized Linear Models |
|
|
15 | (54) |
|
Univariate Generalized Linear Models |
|
|
16 | (22) |
|
|
16 | (1) |
|
|
16 | (1) |
|
Grouped and Ungrouped Data |
|
|
17 | (1) |
|
Definition of Univariate Generalized Linear Models |
|
|
18 | (4) |
|
Models for Continuous Responses |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
Inverse Gaussian Distribution |
|
|
24 | (1) |
|
Models for Binary and Binomial Responses |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
Complementary Log-Log Model |
|
|
26 | (1) |
|
|
26 | (3) |
|
Binary Models as Threshold Models of Latent Linear Models |
|
|
29 | (1) |
|
|
29 | (6) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
36 | (2) |
|
|
38 | (17) |
|
Maximum Likelihood Estimation |
|
|
38 | (1) |
|
Log-likelihood, Score Function and Information Matrix |
|
|
39 | (2) |
|
Numerical Computation of the MLE by Iterative Methods |
|
|
41 | (2) |
|
Uniqueness and Existence of MLEs* |
|
|
43 | (1) |
|
|
44 | (2) |
|
Discussion of Regularity Assumptions* |
|
|
46 | (1) |
|
Additional Scale or Overdispersion Parameter |
|
|
47 | (1) |
|
Hypothesis Testing and Goodness-of-Fit Statistics |
|
|
47 | (3) |
|
Goodness-of-Fit Statistics |
|
|
50 | (5) |
|
|
55 | (12) |
|
|
55 | (1) |
|
|
55 | (3) |
|
Variance Functions with Unknown Parameters |
|
|
58 | (1) |
|
Nonconstant Dispersion Parameter |
|
|
59 | (1) |
|
|
60 | (5) |
|
Nonlinear and Nonexponential Family Regression Models* |
|
|
65 | (2) |
|
Notes and Further Reading |
|
|
67 | (2) |
|
Models for Multicategorical Responses: Multivariate Extensions of Generalized Linear Models |
|
|
69 | (70) |
|
Multicategorical Response Models |
|
|
70 | (7) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
72 | (3) |
|
Multivariate Generalized Linear Models |
|
|
75 | (2) |
|
Models for Nominal Responses |
|
|
77 | (4) |
|
The Principle of Maximum Random Utility |
|
|
77 | (2) |
|
Modelling of Explanatory Variables: Choice of Design Matrix |
|
|
79 | (2) |
|
Models for Ordinal Responses |
|
|
81 | (24) |
|
Cumulative Models: The Threshold Approach |
|
|
83 | (1) |
|
Cumulative Logistic Model or Proportional Odds Model |
|
|
83 | (3) |
|
Grouped Cox Model or Proportional Hazards Model |
|
|
86 | (1) |
|
Extreme Maximal-value Distribution Model |
|
|
86 | (1) |
|
Extended Versions of Cumulative Models |
|
|
87 | (1) |
|
Link Functions and Design Matrices for Cumulative Models |
|
|
88 | (4) |
|
|
92 | (3) |
|
Generalized Sequential Models |
|
|
95 | (3) |
|
Link Functions of Sequential Models |
|
|
98 | (1) |
|
Strict Stochastic Ordering* |
|
|
99 | (1) |
|
|
100 | (2) |
|
Link Function and Design Matrix for Two-Step Models |
|
|
102 | (1) |
|
|
103 | (2) |
|
|
105 | (7) |
|
Maximum Likelihood Estimation |
|
|
105 | (2) |
|
|
107 | (1) |
|
Testing and Goodness-of-Fit |
|
|
107 | (1) |
|
Testing of Linear Hypotheses |
|
|
107 | (1) |
|
Goodness-of-Fit Statistics |
|
|
107 | (2) |
|
Power-Divergence Family* |
|
|
109 | (2) |
|
Asymptotic Properties under Classical ``Fixed Cells'' Assumptions |
|
|
111 | (1) |
|
Sparseness and ``Increasing-Cells'' Asymptotics |
|
|
112 | (1) |
|
Multivariate Models for Correlated Responses |
|
|
112 | (24) |
|
|
114 | (1) |
|
|
114 | (2) |
|
|
116 | (3) |
|
|
119 | (1) |
|
Marginal Models for Correlated Univariate Responses |
|
|
120 | (3) |
|
The Generalized Estimating Approach for Statistical Inference |
|
|
123 | (6) |
|
Marginal Models for Correlated Categorical Responses |
|
|
129 | (6) |
|
Likelihood-based Inference for Marginal Models |
|
|
135 | (1) |
|
Notes and Further Reading |
|
|
136 | (3) |
|
|
136 | (3) |
|
Selecting and Checking Models |
|
|
139 | (34) |
|
|
139 | (6) |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
142 | (1) |
|
Stepwise Backward and Forward Selection |
|
|
143 | (2) |
|
|
145 | (16) |
|
Diagnostic Tools for the Classical Linear Model |
|
|
146 | (1) |
|
|
147 | (4) |
|
Residuals and Goodness-of-Fit Statistics |
|
|
151 | (5) |
|
|
156 | (5) |
|
General Tests for Misspecification* |
|
|
161 | (9) |
|
Estimation under Model Misspecification |
|
|
162 | (3) |
|
|
165 | (1) |
|
|
165 | (1) |
|
|
166 | (1) |
|
Tests for Nonnested Hypotheses |
|
|
167 | (1) |
|
Tests Based on Artificial Nesting |
|
|
168 | (1) |
|
Generalized Wald and Score Tests |
|
|
168 | (2) |
|
Notes and Further Reading |
|
|
170 | (3) |
|
Bayesian Model Determination |
|
|
170 | (2) |
|
|
172 | (1) |
|
Model Tests Against Smooth Alternatives |
|
|
172 | (1) |
|
Semi- and Nonparametric Approaches to Regression Analysis |
|
|
173 | (68) |
|
Smoothing Techniques for Continuous Responses |
|
|
174 | (19) |
|
Regression Splines and Other Basis Functions |
|
|
174 | (2) |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
179 | (2) |
|
|
181 | (2) |
|
|
183 | (1) |
|
Simple Neighborhood Smoothers |
|
|
183 | (1) |
|
|
184 | (3) |
|
|
187 | (2) |
|
Relation to Other Smoothers |
|
|
189 | (1) |
|
Selection of Smoothing Parameters |
|
|
190 | (3) |
|
Smoothing for Non-Gaussian Data |
|
|
193 | (9) |
|
|
193 | (1) |
|
Fisher Scoring for Penalized Likelihood* |
|
|
194 | (1) |
|
Penalization and Spline Smoothing |
|
|
195 | (1) |
|
Fisher Scoring for Generalized Spline Smoothing* |
|
|
196 | (1) |
|
Choice of Smoothing Parameter |
|
|
197 | (1) |
|
Localizing Generalized Linear Models |
|
|
198 | (3) |
|
Local Fitting by Weighted Scoring |
|
|
201 | (1) |
|
Modelling with Multiple Covariates |
|
|
202 | (19) |
|
|
207 | (1) |
|
Generalized Additive Models |
|
|
207 | (1) |
|
|
208 | (1) |
|
Varying-Coefficient Models |
|
|
208 | (1) |
|
Projection Pursuit Regression |
|
|
209 | (1) |
|
|
210 | (3) |
|
|
213 | (1) |
|
Backfitting Algorithm for Generalized Additive Models |
|
|
213 | (4) |
|
Backfitting with Spline Functions |
|
|
217 | (3) |
|
Choice of Smoothing Parameter |
|
|
220 | (1) |
|
|
220 | (1) |
|
Semiparametric Bayesian Inference for Generalized Regression |
|
|
221 | (18) |
|
|
221 | (1) |
|
Smoothness Priors Approaches |
|
|
221 | (6) |
|
Basis Function Approaches |
|
|
227 | (1) |
|
Models with Multiple Covariates |
|
|
228 | (3) |
|
|
231 | (3) |
|
Latent Variable Models for Categorical Responses |
|
|
234 | (5) |
|
Notes and Further Reading |
|
|
239 | (2) |
|
Fixed Parameter Models for Time Series and Longitudinal Data |
|
|
241 | (42) |
|
|
242 | (18) |
|
|
242 | (1) |
|
Generalized Autoregressive Models |
|
|
242 | (4) |
|
Quasi-Likelihood Models and Generalized Autoregression Moving Average Models |
|
|
246 | (3) |
|
Statistical Inference for Conditional Models |
|
|
249 | (6) |
|
|
255 | (3) |
|
Estimation of Marginal Models |
|
|
258 | (2) |
|
|
260 | (18) |
|
|
261 | (1) |
|
Generalized Autoregressive Models, Quasi-Likelihood Models |
|
|
261 | (1) |
|
|
262 | (2) |
|
|
264 | (1) |
|
Subject-specific Approaches and Conditional Likelihood |
|
|
264 | (3) |
|
|
267 | (1) |
|
|
268 | (6) |
|
Generalized Additive Models for Longitudinal Data |
|
|
274 | (4) |
|
Notes and Further Reading |
|
|
278 | (5) |
|
|
283 | (48) |
|
Linear Random Effects Models for Normal Data |
|
|
285 | (7) |
|
Two-stage Random Effects Models |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
289 | (1) |
|
Known Variance-Covariance Components |
|
|
289 | (1) |
|
Unknown Variance-Covariance Components |
|
|
289 | (2) |
|
Derivation of the EM algorithm* |
|
|
291 | (1) |
|
Random Effects in Generalized Linear Models |
|
|
292 | (6) |
|
Generalized Linear Models with Random Effects |
|
|
293 | (1) |
|
|
294 | (4) |
|
Estimation Based on Posterior Modes |
|
|
298 | (5) |
|
Known Variance-Covariance Components |
|
|
298 | (1) |
|
Unknown Variance-Covariance Components |
|
|
299 | (1) |
|
|
300 | (1) |
|
Fisher Scoring for Given Variance-Covariance Components |
|
|
300 | (2) |
|
|
302 | (1) |
|
Estimation by Integration Techniques |
|
|
303 | (15) |
|
Maximum Likelihood Estimation of Fixed Parameters |
|
|
303 | (2) |
|
Direct Maximization Using Fitting Techniques for GLMs |
|
|
305 | (3) |
|
Nonparametric Maximum Likelihood for Finite Mixtures |
|
|
308 | (2) |
|
Posterior Mean Estimation of Random Effects |
|
|
310 | (1) |
|
Indirect Maximization Based on the EM Algorithm* |
|
|
311 | (4) |
|
Algorithmic Details for Posterior Mean Estimation* |
|
|
315 | (3) |
|
|
318 | (3) |
|
|
321 | (4) |
|
Bayesian Generalized Mixed Models |
|
|
321 | (1) |
|
Generalized Additive Mixed Models |
|
|
322 | (3) |
|
Marginal Estimation Approach to Random Effects Models |
|
|
325 | (3) |
|
Notes and Further Reading |
|
|
328 | (3) |
|
State Space and Hidden Markov Models |
|
|
331 | (54) |
|
Linear State Space Models and the Kalman Filter |
|
|
332 | (13) |
|
Linear State Space Models |
|
|
332 | (5) |
|
|
337 | (1) |
|
Linear Kalman Filtering and Smoothing |
|
|
338 | (2) |
|
Kalman Filtering and Smoothing as Posterior Mode Estimation* |
|
|
340 | (2) |
|
|
342 | (1) |
|
EM Algorithm for Estimating Hyperparameters* |
|
|
343 | (2) |
|
Non-Normal and Nonlinear State Space Models |
|
|
345 | (5) |
|
Dynamic Generalized Linear Models |
|
|
345 | (2) |
|
|
347 | (2) |
|
Nonlinear and Nonexponential Family Models* |
|
|
349 | (1) |
|
Non-Normal Filtering and Smoothing |
|
|
350 | (19) |
|
Posterior Mode Estimation |
|
|
351 | (1) |
|
Generalized Extended Kalman Filter and Smoother* |
|
|
352 | (2) |
|
Gauss-Newton and Fisher-Scoring Filtering and Smoothing* |
|
|
354 | (2) |
|
Estimation of Hyperparameters* |
|
|
356 | (1) |
|
|
356 | (5) |
|
Markov Chain Monte Carlo and Integration-based Approaches |
|
|
361 | (1) |
|
|
362 | (3) |
|
Integration-based Approaches |
|
|
365 | (4) |
|
|
369 | (7) |
|
State Space Modelling of Longitudinal Data |
|
|
369 | (3) |
|
Inference For Dynamic Generalized Linear Mixed Models |
|
|
372 | (4) |
|
Spatial and Spatio-temporal Data |
|
|
376 | (7) |
|
Notes and Further Reading |
|
|
383 | (2) |
|
|
385 | (48) |
|
Models for Continuous Time |
|
|
385 | (11) |
|
|
385 | (1) |
|
|
386 | (1) |
|
|
387 | (1) |
|
Piecewise Exponential Model |
|
|
388 | (1) |
|
Parametric Regression Models |
|
|
388 | (1) |
|
Location-Scale Models for log T |
|
|
388 | (1) |
|
Proportional Hazards Models |
|
|
389 | (1) |
|
Linear Transformation Models and Binary Regression Models |
|
|
390 | (1) |
|
|
391 | (1) |
|
|
391 | (1) |
|
|
392 | (1) |
|
|
393 | (1) |
|
|
394 | (1) |
|
|
394 | (1) |
|
Piecewise Exponential Model |
|
|
395 | (1) |
|
|
396 | (18) |
|
|
397 | (3) |
|
Parametric Regression Models |
|
|
400 | (1) |
|
The Grouped Proportional Hazards Model |
|
|
400 | (2) |
|
A Generalized Version: The Model of Aranda-Ordaz |
|
|
402 | (1) |
|
|
403 | (1) |
|
Sequential Model and Parameterization of the Baseline Hazard |
|
|
403 | (1) |
|
Maximum Likelihood Estimation |
|
|
404 | (4) |
|
|
408 | (3) |
|
|
411 | (1) |
|
Maximum Likelihood Estimation* |
|
|
412 | (2) |
|
Discrete Models for Multiple Modes of Failure |
|
|
414 | (6) |
|
|
414 | (3) |
|
Maximum Likelihood Estimation |
|
|
417 | (3) |
|
Smoothing in Discrete Survival Analysis |
|
|
420 | (9) |
|
Smoothing Life Table Estimates |
|
|
420 | (2) |
|
Smoothing with Covariates |
|
|
422 | (1) |
|
Dynamic Discrete-Time Survival Models |
|
|
423 | (1) |
|
|
423 | (2) |
|
Fully Bayesian Inference via MCMC |
|
|
425 | (4) |
|
Remarks and Further Reading |
|
|
429 | (4) |
A |
|
433 | (22) |
|
Exponential Families and Generalized Linear Models |
|
|
433 | (4) |
|
Basic Ideas for Asymptotics |
|
|
437 | (5) |
|
|
442 | (1) |
|
|
443 | (6) |
|
|
449 | (6) |
B. Software for Fitting Generalized Linear Models and Extensions |
|
455 | (12) |
Bibliography |
|
467 | (38) |
Author Index |
|
505 | (7) |
Subject Index |
|
512 | |