Practical Data Science With R

by ; ; ;
Edition: 2nd
Format: Paperback
Pub. Date: 2019-12-03
Publisher(s): Manning Pubns Co
List Price: $53.32

Buy New

Usually Ships in 24-48 Hours
$53.27

Buy Used

Usually Ships in 24-48 Hours
$39.99

Rent Textbook

Select for Price
There was a problem. Please try again later.

eTextbook

We're Sorry
Not Available

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

This invaluable addition to any data scientist's library shows you how to apply the R programming language and useful statistical techniques to everyday business situations as well as how to effectively present results to audiences of all levels. To answer the ever-increasing demand for machine learning and analysis, this new edition boasts additional R tools, modeling techniques, and more.

Practical Data Science with R, Second Edition takes a practice-oriented approach to explaining basic principles in the ever-expanding field of data science. You'll jump right to real-world use cases as you apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Author Biography

Nina Zumel co-founded Win-Vector, a data science consulting firm in San Francisco. She holds a PH.D. in robotics from Carnegie Mellon and was a content developer for EMC's Data Science and Big Data Analytics Training Course. Nina also contributes to the Win-Vector Blog, which covers topics in statistics, probability, computer science, mathematics and optimization.

John Mount co-founded Win-Vector, a data science consulting firm in San Francisco. He has a Ph.D. in computer science from Carnegie Mellon and over 15 years of applied experience in biotech research, online advertising, price optimization and finance. He contributes to the Win-Vector Blog, which covers topics in statistics, probability, computer science, mathematics and optimization.

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.